تحقیقات کاربردی علوم جغرافیایی، جلد ۲۵، شماره ۷۹، صفحات ۰-۰

عنوان فارسی مدل‌سازی و پیش‌بینی غلظت PM₁₀ در هوای شهر اهواز با بهره‌گیری از رویکرد تلفیقی تحلیل آماری و یادگیری عمیق
چکیده فارسی مقاله
هدف این مطالعه ارزیابی و پیش‌بینی PM10 شهر اهواز با روش‌های آماری و شبکه عصبی مصنوعی بود. داده‌های روزانه‌ی هواشناسی و داده‌های PM10 (1390 تا 1402) از سازمان هواشناسی و اداره کل محیط‌زیست خوزستان دریافت شد. ابتدا داده‌ها پردازش و نرمال بودن آن‌ها با روش کلموگروف اسمیرنوف بررسی شد. با توجه به غیرنرمال بودن داده‌ها، از روش‌های اسپیرمن و تاوی بی کندال برای بررسی همبستگی‌شان با نرم‌افزار spss استفاده شد. سایر بخش‌ها با زبان برنامه‌نویسی پایتون و در فضای اسپایدر انجام شد؛ سری زمانی و اطلاعات آماری داده‌ها به دست آمد. جهت پیش‌بینی میزان PM10 برای گام‌های زمانی آینده از روش شبکه عصبی (MLP) استفاده شد. بیانگر وجود ارتباط معنادار بین متغیرهای هواشناسی و PM10 بود. به ترتیب، نتایج همبستگی‌های اسپیرمن و تاوی بی کندال نشان داد بین PM10 با سرعت باد (به میزان 0.094 و 0.061) و دما (0.284 و 0.187) دارای همبستگی مثبت و معنادار در سطح اطمینان 99% می‌باشد. همچنین، این پارامتر با دیدافقی (0.408- و 0.300 -)، جهت باد (0.048 و 0.034 -)، بارش (0.159 و 0.125-) و رطوبت نسبی (0.259 و 0.173-) دارای همبستگی معکوس و معناداری در سطح اطمینان 0.99% بوده است. برای پیش‌بینی میزان PM10 آینده، از شبکه عصبی (MLP) استفاده شد. مدل از نوع Sequential با یک لایه‌ی ورودی با 6 نورون، سه لایه‌ی مخفی از نوع Dense با 16، 32 و 64 نورون و یک لایه خروجی بود. میانگین مربعات خطای MSE برای بخش آموزش برابر با 0.0034 و برای داده‌های اعتبارسنجی val_loss: 0.0012 بود. برای بخش آزمایش، اعتبار سنجی برابر mse_mlp=0.0048 و val_loss: 0.0012 بود. نتایج می‌دهد که بین داده‌های هواشناسی و PM10 همبستگی معناداری از نوع مستقیم یا معکوسی وجود دارد. نتایج (MLP) نشان داد که شبکه توانسته عملکرد و خروجی مطلوبی را ارائه دهد و پیش‌بینی قابل‌قبولی برای داده‌های PM10 شهر اهواز داشته باشد.
 
کلیدواژه‌های فارسی مقاله آلودگی هوا، سری‌های زمانی، شبکه عصبی، پرسپترون چند لایه (MLP)، ذرات معلق کمتر از ده میکرون (PM10)، رگرسیون.

عنوان انگلیسی Modeling and Prediction of PM₁₀ Concentrations in Ahvaz Using a Hybrid Statistical and Deep Learning Approach
چکیده انگلیسی مقاله
Air pollution has significant impacts on human health, environmental quality, and the sustainable development of cities. This study aimed to evaluate PM10 using meteorological data from the city of Ahvaz through statistical methods and artificial neural networks. Daily meteorological data and air quality control station data for 4485 days (from 2011 to 2023) were obtained from the National Meteorological Organization and the Khuzestan Department of Environment. Initially, the data were processed and refined, and their normality was assessed using the Kolmogorov-Smirnov test. Given the non-normality of the data, Spearman's and Kendall's Tau-b methods were employed to examine their correlations. The time series and statistical information of the data were obtained using Python programming language. Furthermore, to predict future PM10 levels, the Multilayer Perceptron (MLP) neural network method was utilized. The results of these analyses indicated a significant correlation between meteorological variables and PM10. The Spearman and Kendall Tau-b correlations showed that PM10 had a positive and significant correlation with wind speed (0.094 and 0.061) and temperature (0.284 and 0.187) at a 99% confidence level. Conversely, PM10 exhibited a negative and significant correlation with visibility (-0.408 and -0.300), wind direction (-0.048 and -0.034), precipitation (-0.159 and -0.125), and relative humidity (-0.259 and -0.173) at the 99% confidence level. For future PM10 predictions, the MLP neural network was used. The model was of the Sequential type with an input layer consisting of 6 neurons, three hidden layers of Dense type with 16, 32, and 64 neurons, and an output layer with a linear activation function. The mean squared error (MSE) for the training set was 0.0034, and for the validation data, it was 0.0012. For the test set, the obtained validation accuracy was mse_mlp=0.0048 and val_loss=0.0012. The results indicate a significant direct or inverse correlation between meteorological data and PM10. Additionally, the outcomes of the MLP neural network demonstrated that the network provided satisfactory performance and acceptable predictions for PM10 data in Ahvaz.
کلیدواژه‌های انگلیسی مقاله Air Pollution, Time Series, Neural Network, Multilayer Perceptron (MLP), PM10, Regression.

نویسندگان مقاله عاطفه بساک | Atefeh Bosak
Department of Natural Geography, Faculty of Geographical Sciences, Khwarazmi University, Tehran, Iran.
گروه جغرافیا طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران، تهران، ایران

زهرا حجازی زاده | Zahra Hejazizadeh
Department of Natural Geography, Faculty of Geographical Sciences, Khwarazmi University, Tehran, Iran.
گروه جغرافیا طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران، تهران، ایران

اکبر حیدری تاشه کبود | Akbar Heydari Tashekaboud
Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China & Department of Geography & Urban Planning; Ferdowsi University of Mashhad,
گروه هوش مصنوعی و شهرهای هوشمند دانشگاه ژائو ژنگ، چین و گروه جغرافیا و برنامه‌ریزی شهری، دانشگاه فردوسی مشهد، ایران .


نشانی اینترنتی http://jgs.khu.ac.ir/browse.php?a_code=A-10-3621-2&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده اب و هواشناسی
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات