پژوهش های ریاضی، جلد ۴، شماره ۲، صفحات ۲۲۹-۲۴۰

عنوان فارسی ﻧﺘﺎیج وﺟﻮدی ﺑﻬﺘﺮیﻦ زوجﻫﺎی نزدینی ﺑﺮای رده‌ای ﺧﺎص از ﻧﮕﺎﺷﺖﻫﺎی ﻏﯿﺮدوری در ﻓﻀﺎﻫﺎی ﺑﺎﻧﺎخ ﻏﯿﺮبازتابی
چکیده فارسی مقاله ﻓﺮض ﮐﻨﯿﺪ یﮏ زوج ﻧﺎﺗﻬﯽ از زیﺮﻣﺠﻤﻮﻋﻪﻫﺎی ﻓﻀﺎی ﻣﺘﺮیﮏ  ﺑﺎﺷﺪ.  یک نگاشت غیردوری نامیده می‌شود هرگاه . عضو  یک بهترین زوج نزدینی ﺑﺮای ﻧﮕﺎﺷﺖ ﻏﯿﺮدوری  ﻧﺎﻣﯿﺪه ﻣﯽﺷﻮد ﻫﺮﮔﺎه  ﻧﻘﺎط ﺛﺎﺑﺖ ﺑﻮده که ﻓﺎﺻﻠﻪ دو ﻣﺠﻤﻮﻋﻪ   و  را ﺗﻘﺮیﺐ ﺑﺰﻧﻨﺪ، ﺑﻪ ایﻦ ﻣﻌﻨﺎ ﮐﻪ . ﻫﺪف اﺻﻠﯽ ایﻦ ﻣﻘﺎﻟﻪ ﺑﺮرﺳﯽ وﺟﻮد ﭼﻨﯿﻦ ﻧﻘﺎﻃﯽ ﺑﺮای رده‌ای ﺧﺎص از ﻧﮕﺎﺷﺖﻫﺎی ﻏﯿﺮدوری ﺗﺤﺖ ﻋﻨﻮان ﻧﮕﺎﺷﺖﻫﺎیC - ﻏﯿﺮاﻧﺒﺴﺎﻃﯽ ﻧﺴﺒﯽ است ﮐﻪ اﺧﯿﺮاً در ﻣﺮﺟﻊ [1] ﻣﻌﺮﻓﯽ شده است. ﺑﺮای ایﻦﻣﻨﻈﻮر از یﮏ ﻣﻔﻬﻮم ﻫﻨﺪﺳﯽ ﺟﺪیﺪ ﺑﻪﻧﺎم  - ﺳﺎﺧﺘﺎر ﺷﺒﻪ ﻧﺮﻣﺎل یک‌نواﺧﺖ ﮐﻪ ﺑﺮ یﮏ زوج ﻧﺎﺗﻬﯽ و ﻣﺤﺪب از زیﺮ ﻣﺠﻤﻮﻋﻪﻫﺎی یﮏ ﻓﻀﺎی ﺑﺎﻧﺎخ ﮐﻪ ﻟﺰوﻣﺎً بازتابی نیست، اﺳﺘﻔﺎده ﺧﻮاﻫﺪ ﺷﺪ. ﺑﻪﻣﻨﻈﻮر ﺗﺒﯿﯿﻦ ﺑﻬﺘﺮ ایﻦ ﺧﺎﺻﯿﺖ ﻫﻨﺪﺳﯽ ﻧﺸﺎن داده ﻣﯽﺷﻮد ﮐﻪ ﻫﺮ زوج ﻧﺎﺗﻬﯽ، ﺑﺴﺘﻪ، ﮐﺮاﻧﺪار و ﻣﺤﺪب در ﻓﻀﺎﻫﺎی ﺑﺎﻧﺎخ ﺑﻪﻃﻮر یک‌نواﺧﺖ ﻣﺤﺪب ﺗﺤﺖ ﺷﺮایﻂ ﮐﺎﻓﯽ دارای ﺳﺎﺧﺘﺎر ﺷﺒﻪ ﻧﺮﻣﺎل - یک‌نواﺧﺖ اﺳﺖ. در ﻧﻬﺎیﺖ ﺑﺎ اراﺋﻪ ﭼﻨﺪ ﻣﺜﺎل ﮐﺎرﺑﺮدی ﺑﻪ ﺑﺮرﺳﯽ اﺛﺮﺑﺨﺶ ﺑﻮدن ﻧﺘﺎیﺞ ﺣﺎﺻل می‌پردازیم.
کلیدواژه‌های فارسی مقاله ﻧﮕﺎﺷﺖﻫﺎی ﺑﻪﻃﻮر ﻗﻮی C- ﻏﯿﺮاﻧﺒﺴﺎﻃﯽ ﻧﺴﺒﯽ، ﺑﻬﺘﺮیﻦ زوج نزدینی، ﻓﻀﺎی ﺑﻪﻃﻮر یک‌نواﺧﺖ ﻣﺤﺪب،T - ﺳﺎﺧﺘﺎر ﺷﺒﻪ ﻧﺮﻣﺎل یک‌نواﺧﺖ.

عنوان انگلیسی Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 
چکیده انگلیسی مقاله Introduction
Let "" be a nonempty subset of a normed linear space "". A self-mapping "" is said to be nonexpansive provided that "" for all "". In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space "", has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of normal structure. We recall that a nonempty and convex subset "" of a Banach space "" is said to have normal structure if  for any nonempty, bounded, closed and convex subset "" of "" with "", there exists a point "" for which "". The well-known Kirk’s fixed point theorem states that if "" is a nonempty, weakly compact and convex subset of a Banach space "" which has the normal structure and "" is a nonexpansive mapping, then "" has at least one fixed point. In view of the fact that every nonempty, bounded, closed and convex subset of a uniformly convex Banach space "" has the normal structure, the Browder’ fixed point result is an especial case of Kirk’s theorem.
 Material and methods
Let "" be a nonempty pair of subsets of a normed linear space "". "" is said to be a noncyclic mapping if "". Also the noncyclic mapping "" is called relatively nonexpansive whenever "" for any "". Clearly, if "", then we get the class of nonexpppansive self-mappings. Moreover, we note the  noncyclic relatively nonexpansive mapping "" may not be continuous, necessarily. For the noncyclic mapping "", a point "" is called a best proximity pair provided that
""
In the other words, the point "" is a best proximity pair for "" if "" and "" are two fixed points of "" which estimates the distance between the sets "" and "".
The first existence result about such points which is an interesting extension of Browder’s fixed point theorem states that if "" is a nonempty, bounded, closed and convex pair in a uniformly convex Banach space "" and if "" is a noncyclic relatively nonexpansive mapping, then "" has a best proximity pair. Furthermore, a real generalization of Kirk’s fixed point result for noncyclic relatively nonexpansive mappings was proved by using a geometric concept of proximal normal structure, defined on a nonempty and convex pair in a considered Banach space. 
Results and discussion
Let "" be a nonempty and convex pair of subsets of a normed linear space "" and  "" be a noncyclic mapping. The main purpose of this article is to study of the existence of best proximity pairs for another class of noncyclic mappings, called noncyclic strongly relatively C-nonexpansive. To this end, we use a new geometric notion entitled ""-uniformly semi-normal structure defined on "" in a Banach space which is not reflexive, necessarily. To illustrate this geometric property, we show that every nonempty, bounded, closed and convex pair in uniformly convex Banach spaces has ""-uniformly semi-normal structure under some sufficient conditions.
Conclusion
The following conclusions were drawn from this research.
We introduce a geometric notion of ""-uniformly semi-normal structure and prove that: Let "" be a nonempty, bounded, closed and convex pair in a strictly convex Banach space "" such that "" is nonempty and "". Let "" be a noncyclic strongly relatively C-nonexpansive mapping. If "" has the ""-uniformly semi-normal structure, then "" has a best proximity pair.
In the setting of uniformly convex in every direction Banach space "", we also prove that: Let "" be a nonempty, weakly compact and convex pair in "" and  "" be a noncyclic mapping such that "" for all "" with "". If
""
where "" is a projection mapping defined on "" then "" has ""-semi-normal structure.
We present some  examples showing the useability of our main conclusions.
./files/site1/files/42/8Abstract.pdf
کلیدواژه‌های انگلیسی مقاله Strongly relatively C-nonexpansive mapping, Best proximity pair, Uniformly convex space, T-Uniformly semi-normal structure.

نویسندگان مقاله موسی گابله | Moosa Gabeleh
Ayatollah Boroujerdi University
دانشگاه آیت‌ا...العظمی بروجردی، گروه ریاضی


نشانی اینترنتی http://mmr.khu.ac.ir/browse.php?a_code=A-10-143-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده جبر
نوع مقاله منتشر شده مقاله مستقل
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات