پژوهش های ریاضی، جلد ۵، شماره ۱، صفحات ۱۰۷-۱۲۰

عنوان فارسی توسیع های لَخت مدولی، زیرمجموعه های ضربی بستۀ حافظ زیرمدول‌های دوری و تجزیه در مدول ها
چکیده فارسی مقاله فرض کنید  یک حلقه جابه‌جایی یکدار باشد،  یک -مدول یکانی و  یک زیرمجموعۀ ضربی بسته . گوییم  حافظ زیرمدولهای دوری  است، هرگاه انقباض هر زیرمدول دوری  به  یک زیرمدول دوری باشد. در این مقاله ضمن ارائه یک شرط معادل برای حافظ زیرمدولهای دوری بودن، به بررسی ارتباط بین خواص تجزیهای  و  زمانی که  حافظ زیرمدولهای دوری  است میپردازیم. به‌علاوه مفهوم یک توسیع مدولی لَخت و لَخت ضعیف را معرفی کرده و اگر  یک زیرمجموعۀ ضربی بسته  شامل  باشد،  و  یک توسیع -لَخت ضعیف باشد، تجزیه نسبت به  در  را به تجزیۀ نسبت به  در  ارتباط میدهیم. هم‌چنین نشان میدهیم اگر  فارغ از تاب و  حافظ زیرمدولهای دوری  باشد، آن‌گاه  شکافنده  است و  یک توسیع لخت است. 
 
کلیدواژه‌های فارسی مقاله زیرمجموعه های ضربی بسته حافظ زیرمدول های دوری، توسیع لَخت، مدول اتمی، مدول تجزیۀ یکتا.

عنوان انگلیسی Inert Module Extensions, Multiplicatively Closed Subsets Conserving Cyclic Submodules and Factorization in Modules
چکیده انگلیسی مقاله Introduction
Suppose that "" is a commutative ring with identity, "" is a unitary ""-module and "" is a multiplicatively closed subset of ""
Factorization theory in commutative rings, which has a long history, still gets the attention of many researchers. Although at first, the focus of this theory was factorization properties of elements in integral domains, in the late nineties the theory was generalized to commutative rings with zero-divisors and to modules. Also recently, the factorization properties of an element of a module with respect to a multiplicatively closed subset of the ring has been investigated. It has been shown that using these general views, one can derive new results and insights on the classic case of factorization theory in integral domains.
An important and attractive question in this theory is understanding how factorization properties of a ring or a module behave under localization. In particular, Anderson, et al in 1992 showed that if "" is an integral domain and every principal ideal of "" contracts to a principal ideal of "", then there are strong relations between factorization properties of "" and "". In the same paper and also in another paper by Aḡargün, et al in 2001 the concepts of inert and weakly inert extensions of rings were introduced and the relation of factorization properties of "" and "", under the assumption that "" is (weakly) inert, is studied.
In this paper, we generalize the above concepts to modules and with respect to a multiplicatively closed subset. Then we utilize them to relate the factorization properties of "" and "".
 Material and methods
We first recall the concepts of factorization theory in modules with respect to a multiplicatively closed subset of the ring. Then, we define multiplicatively closed subsets conserving cyclic submodules of "" and say that "" conserves cyclic submodules of "", when the contraction of every cyclic submodule of "" to "" is a cyclic submodule. We present conditions on "" equivalent to conserving cyclic submodules of "" and study how factorization properties of "" is related to those of "", when "" coserves cyclic submodules of "" Finally we present generalizations of inert and weakly inert extensions of rings to modules and investigate how factorization properties behave under localization with respect to "", when "" is inert or weakly inert.
 
Results and discussion
We show that if "" is an integral domain, "" is torsion-free and "" conserves cyclic submodules of "", then "" splits "" (as defined by Nikseresht in 2018) and hence factorization properties of "" and those of "" are strongly related. Also we show that under certain conditions, the converse is also true, that is, if "" splits "", then "" conserves cyclic submodules of "".
Suppose that "" is a multiplicatively closed subset of "" containing "" and "". We show that if "" is a ""-weakly inert extension, then there is a strong relationship between ""- factorization properties of "" and ""-factorization properties of "". For example, under the above assumptions, if "" is also torsion-free and has unique (or finite or bounded) factorization with respect to "", then "" has the same property with respect to "".
Conclusion
In this paper, the concepts of a multiplicatively closed subset conserving cyclic submodules and inert and weakly inert extensions of modules are introduced and utilized to derive relations between factorization properties of a module "" and those of its localization "". It is seen that many properties can be delivered from one to another when "" conserves cyclic submodules or when "" is a weakly inert extension, especially when "" is an integral domain and "" is torsion-free.
./files/site1/files/51/%D9%86%DB%8C%DA%A9_%D8%B3%D8%B1%D8%B4%D8%AA.pdf
کلیدواژه‌های انگلیسی مقاله Multiplicatively closed subsets conserving cyclic submodules, Inert extension, Atomic module, Unique factorization module

نویسندگان مقاله اشکان نیک سرشت | Ashkan Nikseresht
Shiraz University
دانشگاه شیراز، دانشکدۀ علوم، گروه ریاضی


نشانی اینترنتی http://mmr.khu.ac.ir/browse.php?a_code=A-10-171-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده جبر
نوع مقاله منتشر شده مقاله مستقل
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات