پژوهش های ریاضی، جلد ۵، شماره ۲، صفحات ۲۲۱-۲۲۸

عنوان فارسی یک توپولوژی موضعاً محدب روی جبرهای بورلینگ
چکیده فارسی مقاله فرض کنید  یک گروه موضعاً فشرده،  یک تابع وزن و   فضای توابع اندازه­پذیر روی   باشد که اساساً کراندار و در بینهایت صفر می­شوند. در این مقاله توپولوژی موضعاً محدب  را روی فضای وزندار  بررسی می­کنیم. نشان می‌دهیم که دوگان   با این توپولوژی برابر فضای باناخ  است. علاوه بر این، برخی ویژگی‌های فضای    با توپولوژی مذکور را بررسی می‌کنیم.
 
کلیدواژه‌های فارسی مقاله  گروه موضعاً فشرده، توپولوژی موضعاً محدب، فضای لبگ وزندار، دوگان.

عنوان انگلیسی A locally Convex Topology on the Beurling Algebras
چکیده انگلیسی مقاله Introduction
Let G be a locally compact group with a fixed left Haar measure λ  and  "" be a weight function on G;  that is a Borel measurable function "" with  "" for all "".   We denote by "" the set of all measurable  functions "" such that ""; the group algebra of  G  as defined in [2]. Then  "" with the convolution product “*” and the norm  "" defined by ""  is a Banach algebra known as Beurling algebra. We denote by n(G,"") the topology generated by the  norm "".    Also, let "" denote the space of all measurable functions 𝑓  with "", the Lebesgue space as defined in [2].
Then ""  with   the product "" defined by "", the   norm "" defined by  "", and the complex conjugation as involution is a commutative ""algebra. Moreover, "" is the dual of "". In fact, the mapping   ""is an isometric isomorphism.
 We denote by ""the ""-subalgebra of "" consisting of all functions  𝘨 on G such that for each "", there is a compact subset K of G for which
"".  For a study of ""in the unweighted case see  [3,6].
 We introduce and study a locally convex topology "" on "" such that "" can be identified with the strong dual of "". Our work generalizes  some interesting results of  [15] for group algebras to a more general setting of weighted group algebras. We also show that ("","")  could be a normable or bornological space only if G is compact. Finally, we prove that "" is complemented in ""  if and only if G is compact. For some similar recent studies see [4,7,8,10,12-14]. One may be interested to see the work [9] for an application of these results.
Main results
We denote by  𝒞  the set of increasing sequences of compact subsets of G and by the set of increasing sequences "" of real numbers in "" divergent to infinity. For any "" and "", set ""and note that "" is a convex balanced absorbing set in the space "". It is easy to see that the family 𝒰 of all sets "" is a base of neighbourhoods of zero for a locally convex topology on "" see for example [16]. We denote this topology by "".  Here we use some ideas from  [15], where this topology has been introduced and studied for  group algebras.
Proposition 2.1 Let G be a locally compact group, and  ""be a weight function on G.   The norm topology n(G,"") on "" coincides with the topology "" if and only if G is compact.
Proposition 2.2 Let G be a locally compact group, and  ""be a weight function on G.  Then the dual of ("","")  endowed with the strong topology can be identified with ""endowed with ""-topology.
Proposition 2.3 Let G be a locally compact group, and  ""be a weight function on G.  Then the following assertions are equivalent:
a) ("","")  is barrelled.
b) ("","")  is bornological.
c) ("","")  is metrizable.
d) G  is compact.
Proposition 2.4 Let G be a locally compact group, and  ""be a weight function on G.  Then  is not complemented in ../files/site1/files/52/10.pdf
کلیدواژه‌های انگلیسی مقاله  Locally compact group, Locally convex topology, Weighted Lebesgue space, Dual.

نویسندگان مقاله سعید مقصودی | Saeid Maghsoudi
University of Zanjan
دانشگاه زنجان، گروه ریاضی


نشانی اینترنتی http://mmr.khu.ac.ir/browse.php?a_code=A-10-80-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده جبر
نوع مقاله منتشر شده مقاله مستقل
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات