پژوهش های ریاضی، جلد ۶، شماره ۳، صفحات ۴۸۷-۵۰۰

عنوان فارسی مدل دینامیکی انتقال ویروس در گیاهان با دو تأخیر زمانی
چکیده فارسی مقاله
 در بررسی بیماری‌های ویروسی در گیاهان، واکنش سیستم ایمنی گیاه نقش اساسی ایفا می‌کند. در این مقاله، یک مدل ریاضی، بر اساس دستگاه معادلات دیفرانسیل با تأخیر زمانی برای واکنش سیستم ایمنی گیاه ارائه می‌شود. در ادامه، رفتار دینامیکی مدل حول نقاط تعادل بررسی شده و در پایان، یک گیاه در دو حالت متفاوت اورگانیک و غیراورگانیک در نظر گرفته می‌شود و رفتار منحنی‌های جواب با استفاده از نرم افزارمتلب بررسی می‌شود.
کلیدواژه‌های فارسی مقاله مدل ریاضی، نقطه تعادل، پایداری، انشعاب‌هاف. رده بندی ریاضی (2010)، .37C75، 37H20، 00A71

عنوان انگلیسی Dynamical Model for Virus Transmission in Plants with Two Time Delays
چکیده انگلیسی مقاله Introduction
One of the major challenges in supporting a growing human population is supplies of food. Plants play a major rule in providing human food. Hence, it is important to study plant diseases and provide appropriate models for describing the relationship between plant infection and its growth and reproduction. One of effective models that describes this relationship is mathematical model. One of the important aspects that the mathematical model can presented is the dynamic of the plant’s immune system.
In this paper, a mathematical model for diffusion of infection in the host plant is introduced. The model is based on a differential equation system with two time delays. In this model, the host population of cells is divided into the classes of susceptible cells "" consisting of mature cells and are susceptible to infection, infected cells "" that spread the infection, recovered cells "" that are no longer infectious and "" are proliferating cells that become susceptible after reaching maturity.
We consider two time delays, "" and "", in equations. The proliferating cells have the average maturity time "", after which they are recruited to the susceptible class. "" is the average time of antiviral effects.
In the next sections of this paper, stability conditions of equilibrium points are investigated. In the last section, we consider a plant in two different modes, organic and non- organic. Then the solution curves are plotted with different time delays and compare solutions together.
Material and methods
In this scheme, first we explain the conditions of plant. Then, a mathematical model with two time delays is introduced. As follows, the dynamical behavior of the model is investigated. At the end of paper, we consider a plant with two different modes and plot the solution curves.
Results and discussion
We introduce a mathematical model which explain conditions of plant cells. In this model the independent variable is time, so the model is ODE with two time delays. As follows, using some theorems in dynamical systems, the dynamical behavior of the model is investigated. Using these results, we can provide  good conditions for a plant that epidemic does not happen. At the end, we use of Matlab software to plot the solution curves in two different conditions. The curves explain the behavior of plant cells when they are infectious.
Conclusion
The following conclusions were drawn from this research.
  • A mathematical model which is introduced in this paper is more realistic than the previous models because, the grow rate of a plant is considered to be logistic.
  • Theorems show that how we can control the virus to prevent epidemic outbreak.
  • We plot solution curves for two different plants (organic and non-organic). Solution curves show that how the conditions of plant cells change by changing the parameters.
کلیدواژه‌های انگلیسی مقاله Mathematical model, Equilibrium point, Stability, Hopf bifurcation.

نویسندگان مقاله طیبه واعظی زاده | Tayebe Waezizadeh
Shahid Bahonar university of Kerman
دانشگاه شهیدباهنر کرمان، دانشکدۀ ریاضی و کامپیوتر، بخش ریاضی محض

طیبه پارسایی | Tayebe Parsaei
Shahid Bahonar university of Kerman
دانشگاه شهیدباهنر کرمان، دانشکدۀ ریاضی و کامپیوتر، بخش ریاضی محض

فرشته فروزش | Fereshte Fourozesh
Bam university
مجتمع آموزش عالی بم، دانشکدۀ ریاضیات و محاسبات نرم، گروه ریاضی


نشانی اینترنتی http://mmr.khu.ac.ir/browse.php?a_code=A-10-670-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده جبر
نوع مقاله منتشر شده مقاله مستقل
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات