International Journal of Supply and Operations Management، جلد ۲، شماره ۳، صفحات ۹۰۵-۹۲۴

عنوان فارسی An Efficient Genetic Agorithm for Solving the Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key Representation
چکیده فارسی مقاله In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSGS) is considered as the decoding procedure. In this paper, a simple, efficient fitness function is proposed which has better performance compared to the other fitness functions in the literature. Defining a new mutation operator for ML is the other contribution of the current study. Comparing the results of the proposed GA with other approaches using the well-known benchmark sets in PSPLIB validates the effectiveness of the proposed algorithm to solve the MRCPSP.
کلیدواژه‌های فارسی مقاله Combinatorial Optimization ، Multi-mode project scheduling ، Resource constraints ، Genetic Algorithm ، Random key representation ،

عنوان انگلیسی An Efficient Genetic Agorithm for Solving the Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key Representation
چکیده انگلیسی مقاله In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSGS) is considered as the decoding procedure. In this paper, a simple, efficient fitness function is proposed which has better performance compared to the other fitness functions in the literature. Defining a new mutation operator for ML is the other contribution of the current study. Comparing the results of the proposed GA with other approaches using the well-known benchmark sets in PSPLIB validates the effectiveness of the proposed algorithm to solve the MRCPSP.
کلیدواژه‌های انگلیسی مقاله Combinatorial Optimization , Multi-mode project scheduling , Resource constraints , Genetic Algorithm , Random key representation ,

نویسندگان مقاله | mohammad hassan sebt
amirkabir university of technology, tehran, iran

سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)

| mohammad reza afshar
amirkabir university of technology, tehran, iran

سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)

| yagub alipouri
amirkabir university of technology, tehran, iran

سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)


نشانی اینترنتی http://system.khu.ac.ir/ijsom/browse.php?a_code=A-10-100-58&slc_lang=en&sid=en
فایل مقاله دریافت فایل مقاله
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده Artificial intelligence & expert system
نوع مقاله منتشر شده Research paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات